Skip to main content

Ethereum is a decentralized, open-source blockchain with smart contract functionality. Ether (ETH) is the native cryptocurrency of the platform. It is the second-largest cryptocurrency by market capitalization, after Bitcoin. Ethereum is the most actively used blockchain.

Ether is listed on exchanges under the ticker symbol ETH. The Greek uppercase Xi character (Ξ) is sometimes used for its currency symbol.

Ethereum is a permissionless, non-hierarchical network of computers (nodes) which build and come to consensus on an ever-growing series of "blocks", or batches of transactions, known as the blockchain. Each block contains an identifier of the block that it must immediately follow in the chain if it is to be considered valid. Whenever a node adds a block to its chain, it executes the transactions therein in their order, thereby altering the ETH balances and other storage values of Ethereum accounts. These balances and values, collectively known as the state, are maintained on the node's computer separately from the blockchain, in a Merkle tree.

Ethereum also allows for the creation of unique and indivisible tokens, called non-fungible tokens (NFTs). Since these types of tokens are unique, they have been used to represent digital art, sports memorabilia, virtual real estate and gaming.

Each node communicates with a relatively small subset of the network, known as its peers. Whenever a node wishes to include a new transaction in the blockchain, it sends the transaction to its peers, who then send it to their peers, and so on. In this way, it propagates throughout the network. Certain nodes, called miners, maintain a list of all of these new transactions and use them to create new blocks, which they then send to the rest of the network. Whenever a node receives a block, it checks the validity of the block and of all of the transactions therein and, if valid, adds it to its blockchain and executes all of said transactions. As the network is non-hierarchical, a node may receive competing blocks, which may form competing chains. The network comes to consensus on the blockchain by following the "longest-chain rule", which states that the chain with the most blocks at any given time is the canonical chain. This rule achieves consensus because miners do not want to expend their computational work trying to add blocks to a chain that will be abandoned by the network.

Ether (ETH) is the cryptocurrency generated by the Ethereum protocol as a reward to miners in a proof-of-work system for adding blocks to the blockchain. It is the only currency accepted in the payment of transaction fees, which also go to miners. The block reward together with the transaction fees provide the incentive to miners to keep the blockchain growing (ie. to keep processing new transactions). Therefore, ETH is fundamental to the operation of the network. Each Ethereum account has an ETH balance and may send ETH to any other account. The smallest subunit of ETH is known as a Wei and is equal to 10-18 ETH. Ether is often erroneously referred to as "Ethereum".

There are two types of accounts on Ethereum: user accounts (also known as externally-owned accounts) and contracts. Both types have an ETH balance, may send ETH to any account, may call any public function of a contract or create a new contract, and are identified on the blockchain and in the state by their address.

User accounts are the only type which may create transactions. For a transaction to be valid, it must be signed using the sending account's private key, a 64-character hexadecimal string that should only be known to the account's owner. The signature algorithm used is ECDSA. Importantly, this algorithm allows one to derive the signer's address from the signature without knowing the private key.

Contracts are the only type of account which has associated code (a set of functions and variable declarations) and contract storage (the values of the variables at any given time). Contracts are passive entities, only able to do anything as a result of an account calling one of its functions. During the execution of its code, a contract may: send ETH, read from and write to its storage, create temporary storage (memory) that dies at the end of the function, call any of its own functions, call any public function of a different contract, create a new contract, and query information about the current transaction or the blockchain.

Ethereum addresses are composed of the prefix "0x", a common identifier for hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash of the ECDSA public key (the curve used is the so-called secp256k1). In hexadecimal, 2 digits represent a byte, meaning addresses contain 40 hexadecimal digits, e.g. 0xb794f5ea0ba39494ce839613fffba74279579268. Contract addresses are in the same format, however, they are determined by sender and creation transaction nonce.

The Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts in Ethereum. It is a 256-bit register stack designed to run the same code exactly as intended. It is the fundamental consensus mechanism for Ethereum. The formal definition of the EVM is specified in the Ethereum Yellow Paper. EVMs have been implemented in C++, C#, Go, Haskell, Java, JavaScript, Python, Ruby, Rust, Elixir, Erlang, and soon WebAssembly.

Gas is a unit of account within the EVM used in the calculation of a transaction fee, which is the amount of ETH a transaction's sender must pay to the miner who includes the transaction in the blockchain.

Each type of operation which may be performed by the EVM is hardcoded with a certain gas cost, which is intended to be roughly proportional to the amount of resources (computation and storage) a node must expend to perform that operation. When creating a transaction, the sender must specify a gas limit and gas price. The gas limit is the maximum amount of gas the sender is willing to use in the transaction, and the gas price is the amount of ETH the sender wishes to pay to the miner per unit of gas used. The higher the gas price, the more incentive a miner has to include the transaction in their block, and thus the quicker the transaction will be included in the blockchain. The sender buys the full amount of gas (ie. the gas limit) up-front, at the start of the execution of the transaction, and is refunded at the end for any gas not used. If at any point the transaction does not have enough gas to perform the next operation, the transaction is reverted but the sender still pays for the gas used. Gas prices are typically denominated in Gwei, a subunit of ETH equal to 10-9 ETH.

This fee mechanism is designed to mitigate transaction spam, prevent infinite loops during contract execution, and provide for a market-based allocation of network resources.

On social governance Our governance is inherently social, people who are more connected in the community have more power, a kind of soft power.

The difficulty bomb is an Ethereum protocol feature that causes the difficulty of mining a block to increase exponentially over time after a certain block is reached, with the intended purpose being to incentivize upgrades to the protocol and prevent miners from having too much control over upgrades. As the protocol is upgraded, the difficulty bomb gets pushed back further. The protocol has included a difficulty bomb from the beginning, and the bomb has been pushed back several times. It was originally placed there primarily to ensure a successful upgrade from proof of work to proof of stake, an upgrade which removes miners entirely from the design of the network. The period during which the mining difficulty is increasing is known as the "Ice Age".

Bitcoin's primary use case is that it is a store of value and a digital currency. Ether can also be used as a digital currency and store of value, but the Ethereum network makes it also possible to create and run decentralized applications and smart contracts. Transactions are processed faster on Ethereum than Bitcoin, as new blocks are validated approximately every 12 seconds on Ethereum as opposed to approximately every 10 minutes on Bitcoin. Additionally, Bitcoin has a fixed supply of 21,000,000 coins, whereas Ethereum has no supply cap. Ethereum and Bitcoin are both mined through proof-of-work and can be purchased on most major cryptocurrency exchanges.[

The EVM's instruction set is Turing-complete, meaning Ethereum contracts can do anything that computer programs in general can do. Popular uses of Ethereum have included the creation of fungible (ERC20) and non-fungible (ERC721) tokens with a variety of properties, crowdfunding (eg. initial coin offerings), decentralized finance, decentralized exchanges, decentralized autonomous organizations (DAOs), games, prediction markets, and gambling.

Ethereum's smart contracts are written in high-level programming languages and then compiled down to EVM bytecode and deployed to the Ethereum blockchain. They can be written in Solidity (a language library with similarities to C and JavaScript), Serpent (similar to Python, but deprecated), Yul (an intermediate language that can compile to various different backends – EVM 1.0, EVM 1.5 and eWASM are planned), LLL (a low-level Lisp-like language), and Mutan (Go-based, but deprecated). There is also a research-oriented language under development called Vyper (a strongly-typed Python-derived decidable language). Source code and compiler information are usually published along with the launch of the contract so that users can see the code and verify that it compiles to the bytecode that is on-chain.

ETH NFT collection image

A stripe NFT tribute to one of out favorite crypto stars - Ethereum (ETH). Collect 'em. Trade 'em, Stack 'em, Sell 'em, Enjoy 'em.

Contract Address0x2b52...bcaf
Token ID2
Token StandardERC-1155
ChainEthereum
Last Updated2 months ago
Creator Earnings
0%

ETH NFT

view_module
72.0M items
visibility
4.0K views
  • Unit Price
    USD Unit Price
    Quantity
    Expiration
    From
  • Unit Price
    USD Unit Price
    Quantity
    Floor Difference
    Expiration
    From
keyboard_arrow_down
  • Sales
  • Transfers
Event
Unit Price
Quantity
From
To
Date

ETH NFT

view_module
72.0M items
visibility
4.0K views
  • Unit Price
    USD Unit Price
    Quantity
    Expiration
    From
  • Unit Price
    USD Unit Price
    Quantity
    Floor Difference
    Expiration
    From

Ethereum is a decentralized, open-source blockchain with smart contract functionality. Ether (ETH) is the native cryptocurrency of the platform. It is the second-largest cryptocurrency by market capitalization, after Bitcoin. Ethereum is the most actively used blockchain.

Ether is listed on exchanges under the ticker symbol ETH. The Greek uppercase Xi character (Ξ) is sometimes used for its currency symbol.

Ethereum is a permissionless, non-hierarchical network of computers (nodes) which build and come to consensus on an ever-growing series of "blocks", or batches of transactions, known as the blockchain. Each block contains an identifier of the block that it must immediately follow in the chain if it is to be considered valid. Whenever a node adds a block to its chain, it executes the transactions therein in their order, thereby altering the ETH balances and other storage values of Ethereum accounts. These balances and values, collectively known as the state, are maintained on the node's computer separately from the blockchain, in a Merkle tree.

Ethereum also allows for the creation of unique and indivisible tokens, called non-fungible tokens (NFTs). Since these types of tokens are unique, they have been used to represent digital art, sports memorabilia, virtual real estate and gaming.

Each node communicates with a relatively small subset of the network, known as its peers. Whenever a node wishes to include a new transaction in the blockchain, it sends the transaction to its peers, who then send it to their peers, and so on. In this way, it propagates throughout the network. Certain nodes, called miners, maintain a list of all of these new transactions and use them to create new blocks, which they then send to the rest of the network. Whenever a node receives a block, it checks the validity of the block and of all of the transactions therein and, if valid, adds it to its blockchain and executes all of said transactions. As the network is non-hierarchical, a node may receive competing blocks, which may form competing chains. The network comes to consensus on the blockchain by following the "longest-chain rule", which states that the chain with the most blocks at any given time is the canonical chain. This rule achieves consensus because miners do not want to expend their computational work trying to add blocks to a chain that will be abandoned by the network.

Ether (ETH) is the cryptocurrency generated by the Ethereum protocol as a reward to miners in a proof-of-work system for adding blocks to the blockchain. It is the only currency accepted in the payment of transaction fees, which also go to miners. The block reward together with the transaction fees provide the incentive to miners to keep the blockchain growing (ie. to keep processing new transactions). Therefore, ETH is fundamental to the operation of the network. Each Ethereum account has an ETH balance and may send ETH to any other account. The smallest subunit of ETH is known as a Wei and is equal to 10-18 ETH. Ether is often erroneously referred to as "Ethereum".

There are two types of accounts on Ethereum: user accounts (also known as externally-owned accounts) and contracts. Both types have an ETH balance, may send ETH to any account, may call any public function of a contract or create a new contract, and are identified on the blockchain and in the state by their address.

User accounts are the only type which may create transactions. For a transaction to be valid, it must be signed using the sending account's private key, a 64-character hexadecimal string that should only be known to the account's owner. The signature algorithm used is ECDSA. Importantly, this algorithm allows one to derive the signer's address from the signature without knowing the private key.

Contracts are the only type of account which has associated code (a set of functions and variable declarations) and contract storage (the values of the variables at any given time). Contracts are passive entities, only able to do anything as a result of an account calling one of its functions. During the execution of its code, a contract may: send ETH, read from and write to its storage, create temporary storage (memory) that dies at the end of the function, call any of its own functions, call any public function of a different contract, create a new contract, and query information about the current transaction or the blockchain.

Ethereum addresses are composed of the prefix "0x", a common identifier for hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash of the ECDSA public key (the curve used is the so-called secp256k1). In hexadecimal, 2 digits represent a byte, meaning addresses contain 40 hexadecimal digits, e.g. 0xb794f5ea0ba39494ce839613fffba74279579268. Contract addresses are in the same format, however, they are determined by sender and creation transaction nonce.

The Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts in Ethereum. It is a 256-bit register stack designed to run the same code exactly as intended. It is the fundamental consensus mechanism for Ethereum. The formal definition of the EVM is specified in the Ethereum Yellow Paper. EVMs have been implemented in C++, C#, Go, Haskell, Java, JavaScript, Python, Ruby, Rust, Elixir, Erlang, and soon WebAssembly.

Gas is a unit of account within the EVM used in the calculation of a transaction fee, which is the amount of ETH a transaction's sender must pay to the miner who includes the transaction in the blockchain.

Each type of operation which may be performed by the EVM is hardcoded with a certain gas cost, which is intended to be roughly proportional to the amount of resources (computation and storage) a node must expend to perform that operation. When creating a transaction, the sender must specify a gas limit and gas price. The gas limit is the maximum amount of gas the sender is willing to use in the transaction, and the gas price is the amount of ETH the sender wishes to pay to the miner per unit of gas used. The higher the gas price, the more incentive a miner has to include the transaction in their block, and thus the quicker the transaction will be included in the blockchain. The sender buys the full amount of gas (ie. the gas limit) up-front, at the start of the execution of the transaction, and is refunded at the end for any gas not used. If at any point the transaction does not have enough gas to perform the next operation, the transaction is reverted but the sender still pays for the gas used. Gas prices are typically denominated in Gwei, a subunit of ETH equal to 10-9 ETH.

This fee mechanism is designed to mitigate transaction spam, prevent infinite loops during contract execution, and provide for a market-based allocation of network resources.

On social governance Our governance is inherently social, people who are more connected in the community have more power, a kind of soft power.

The difficulty bomb is an Ethereum protocol feature that causes the difficulty of mining a block to increase exponentially over time after a certain block is reached, with the intended purpose being to incentivize upgrades to the protocol and prevent miners from having too much control over upgrades. As the protocol is upgraded, the difficulty bomb gets pushed back further. The protocol has included a difficulty bomb from the beginning, and the bomb has been pushed back several times. It was originally placed there primarily to ensure a successful upgrade from proof of work to proof of stake, an upgrade which removes miners entirely from the design of the network. The period during which the mining difficulty is increasing is known as the "Ice Age".

Bitcoin's primary use case is that it is a store of value and a digital currency. Ether can also be used as a digital currency and store of value, but the Ethereum network makes it also possible to create and run decentralized applications and smart contracts. Transactions are processed faster on Ethereum than Bitcoin, as new blocks are validated approximately every 12 seconds on Ethereum as opposed to approximately every 10 minutes on Bitcoin. Additionally, Bitcoin has a fixed supply of 21,000,000 coins, whereas Ethereum has no supply cap. Ethereum and Bitcoin are both mined through proof-of-work and can be purchased on most major cryptocurrency exchanges.[

The EVM's instruction set is Turing-complete, meaning Ethereum contracts can do anything that computer programs in general can do. Popular uses of Ethereum have included the creation of fungible (ERC20) and non-fungible (ERC721) tokens with a variety of properties, crowdfunding (eg. initial coin offerings), decentralized finance, decentralized exchanges, decentralized autonomous organizations (DAOs), games, prediction markets, and gambling.

Ethereum's smart contracts are written in high-level programming languages and then compiled down to EVM bytecode and deployed to the Ethereum blockchain. They can be written in Solidity (a language library with similarities to C and JavaScript), Serpent (similar to Python, but deprecated), Yul (an intermediate language that can compile to various different backends – EVM 1.0, EVM 1.5 and eWASM are planned), LLL (a low-level Lisp-like language), and Mutan (Go-based, but deprecated). There is also a research-oriented language under development called Vyper (a strongly-typed Python-derived decidable language). Source code and compiler information are usually published along with the launch of the contract so that users can see the code and verify that it compiles to the bytecode that is on-chain.

ETH NFT collection image

A stripe NFT tribute to one of out favorite crypto stars - Ethereum (ETH). Collect 'em. Trade 'em, Stack 'em, Sell 'em, Enjoy 'em.

Contract Address0x2b52...bcaf
Token ID2
Token StandardERC-1155
ChainEthereum
Last Updated2 months ago
Creator Earnings
0%
keyboard_arrow_down
  • Sales
  • Transfers
Event
Unit Price
Quantity
From
To
Date