ディスカバー
コレクション
トークン
スワップ
ドロップ
アクティビティ
報酬
スタジオ
/
アイテム
所有者
アクティビティ
集約
ネットワーク
サービス利用規約
プライバシーポリシー
$2,827.09
What does a number look like?

What's a (natural) number?

We represent numbers with symbols like 1, 2, 3, I, II, III. We are aware of objects that have a numeric property: A square has 4 sides.

But, what about the number itself? What is it? What does it look like?

In 1923, John von Neumann proposed a set-theoretic construction of natural numbers: We can start with the empty set, and then define the next number as the set containing all previous numbers:

0 = {} 1 = { {} } 2 = {0, 1} = { {}, {{}} }, 3 = {0, 1, 2} = { {}, {{}}, { {}, {{}} } } And so on.

"Numbers", is a collection inspired by von Neumann's construction: In each work, closed shapes correspond to sets.

Numbers

Ethereum
5
2023年1月
アート
Ethereum
5
2023年1月発売
アート
最低価格
0.28 ETH
1階 %0%
トップオファー
—
24時間の出来高 0.00 ETH
合計出来高0.13 ETH
出品中20%
所有者 (一意)2 (40%)

Numbers
Numbers

Ethereum
5
2023年1月
アート
Ethereum
5
2023年1月発売
アート
アイテム
オファー
所有者
特性
アクティビティ
当社について

Numbers

Ethereum
5
2023年1月
アート
Ethereum
5
2023年1月発売
アート
最低価格
0.28 ETH
1階 %0%
トップオファー
—
24時間の出来高 0.00 ETH
合計出来高0.13 ETH
出品中20%
所有者 (一意)2 (40%)

Numbers
Numbers

Ethereum
5
2023年1月
アート
Ethereum
5
2023年1月発売
アート
アイテム
オファー
所有者
特性
アクティビティ
当社について
What does a number look like?

What's a (natural) number?

We represent numbers with symbols like 1, 2, 3, I, II, III. We are aware of objects that have a numeric property: A square has 4 sides.

But, what about the number itself? What is it? What does it look like?

In 1923, John von Neumann proposed a set-theoretic construction of natural numbers: We can start with the empty set, and then define the next number as the set containing all previous numbers:

0 = {} 1 = { {} } 2 = {0, 1} = { {}, {{}} }, 3 = {0, 1, 2} = { {}, {{}}, { {}, {{}} } } And so on.

"Numbers", is a collection inspired by von Neumann's construction: In each work, closed shapes correspond to sets.

What does a number look like?

What's a (natural) number?

We represent numbers with symbols like 1, 2, 3, I, II, III. We are aware of objects that have a numeric property: A square has 4 sides.

But, what about the number itself? What is it? What does it look like?

In 1923, John von Neumann proposed a set-theoretic construction of natural numbers: We can start with the empty set, and then define the next number as the set containing all previous numbers:

0 = {} 1 = { {} } 2 = {0, 1} = { {}, {{}} }, 3 = {0, 1, 2} = { {}, {{}}, { {}, {{}} } } And so on.

"Numbers", is a collection inspired by von Neumann's construction: In each work, closed shapes correspond to sets.