Skip to main content
제작자 26A9F6
제작자 26A9F6

Gels is a science-inspired generative piece. Our algorithm simulates gel electrophoresis, a powerful experimental method in molecular biology used daily by thousands of scientists worldwide. In the lab, scientists "run a gel" to separate and visualize molecules such as DNA, RNA, and proteins. These molecules appear as patterns of bands when photographed, and those patterns can be used to interpret the results of experiments.

The DNA band patterns in this work derive from combinations of a simulated experimental data and real-world data, including DNA sequences that encode several variants of the SARS-CoV-2 spike protein, and the corresponding mRNA vaccines. Our algorithm first generates plausible sample tubes that typically contain one or more DNA fragments. Then, each sample is distributed and "run" on a simulated gel to create the characteristic band patterns that might be observed on real gels.

Our simulations also take into account human error — mistakes are common in the lab, especially for novice researchers, but they can also lead to visually interesting results. For example, uneven salt concentrations or applying excess voltage can cause warping effects.

Finally, we aim to leverage proceeds of this project to support future scientific research! We invite interested collectors to follow along with our future work.

Gels by Jason Brown - Shawn Douglas collection image

Art Blocks Collection: Presents

Heritage Art Blocks Collection: Factory

Project Description: Gels is a science-inspired generative piece. Our algorithm simulates gel electrophoresis, a powerful experimental method in molecular biology used daily by thousands of scientists worldwide. In the lab, scientists "run a gel" to separate and visualize molecules such as DNA, RNA, and proteins. These molecules appear as patterns of bands when photographed, and those patterns can be used to interpret the results of experiments.

The DNA band patterns in this work derive from combinations of a simulated experimental data and real-world data, including DNA sequences that encode several variants of the SARS-CoV-2 spike protein, and the corresponding mRNA vaccines. Our algorithm first generates plausible sample tubes that typically contain one or more DNA fragments. Then, each sample is distributed and "run" on a simulated gel to create the characteristic band patterns that might be observed on real gels.

Our simulations also take into account human error — mistakes are common in the lab, especially for novice researchers, but they can also lead to visually interesting results. For example, uneven salt concentrations or applying excess voltage can cause warping effects.

Finally, we aim to leverage proceeds of this project to support future scientific research! We invite interested collectors to follow along with our future work.

Art 카테고리
계약 주소0xa7d8...d270
토큰 ID322000131
토큰 표준ERC-721
체인Ethereum
마지막 업데이트1년 전
제작자 수익
7.5%

Gels #131

visibility
27 조회수
  • 가격
    USD 가격
    수량
    만료
    From
  • 가격
    USD 가격
    수량
    하한가와의 차이
    만료
    From
keyboard_arrow_down
이벤트
가격
From
To
날짜

Gels #131

visibility
27 조회수
  • 가격
    USD 가격
    수량
    만료
    From
  • 가격
    USD 가격
    수량
    하한가와의 차이
    만료
    From
제작자 26A9F6
제작자 26A9F6

Gels is a science-inspired generative piece. Our algorithm simulates gel electrophoresis, a powerful experimental method in molecular biology used daily by thousands of scientists worldwide. In the lab, scientists "run a gel" to separate and visualize molecules such as DNA, RNA, and proteins. These molecules appear as patterns of bands when photographed, and those patterns can be used to interpret the results of experiments.

The DNA band patterns in this work derive from combinations of a simulated experimental data and real-world data, including DNA sequences that encode several variants of the SARS-CoV-2 spike protein, and the corresponding mRNA vaccines. Our algorithm first generates plausible sample tubes that typically contain one or more DNA fragments. Then, each sample is distributed and "run" on a simulated gel to create the characteristic band patterns that might be observed on real gels.

Our simulations also take into account human error — mistakes are common in the lab, especially for novice researchers, but they can also lead to visually interesting results. For example, uneven salt concentrations or applying excess voltage can cause warping effects.

Finally, we aim to leverage proceeds of this project to support future scientific research! We invite interested collectors to follow along with our future work.

Gels by Jason Brown - Shawn Douglas collection image

Art Blocks Collection: Presents

Heritage Art Blocks Collection: Factory

Project Description: Gels is a science-inspired generative piece. Our algorithm simulates gel electrophoresis, a powerful experimental method in molecular biology used daily by thousands of scientists worldwide. In the lab, scientists "run a gel" to separate and visualize molecules such as DNA, RNA, and proteins. These molecules appear as patterns of bands when photographed, and those patterns can be used to interpret the results of experiments.

The DNA band patterns in this work derive from combinations of a simulated experimental data and real-world data, including DNA sequences that encode several variants of the SARS-CoV-2 spike protein, and the corresponding mRNA vaccines. Our algorithm first generates plausible sample tubes that typically contain one or more DNA fragments. Then, each sample is distributed and "run" on a simulated gel to create the characteristic band patterns that might be observed on real gels.

Our simulations also take into account human error — mistakes are common in the lab, especially for novice researchers, but they can also lead to visually interesting results. For example, uneven salt concentrations or applying excess voltage can cause warping effects.

Finally, we aim to leverage proceeds of this project to support future scientific research! We invite interested collectors to follow along with our future work.

Art 카테고리
계약 주소0xa7d8...d270
토큰 ID322000131
토큰 표준ERC-721
체인Ethereum
마지막 업데이트1년 전
제작자 수익
7.5%
keyboard_arrow_down
이벤트
가격
From
To
날짜