Skip to main content
ac_unit

0

The Huichols call peyote, the sacred hallucinogenic cactus, "Hikuri" or Tatei Hikuri", which can be translated as "Our Mother Hikuri". The hikuri&fractal-lookin' geometry in the background is completely made out of code inside my 3D IDE. Here is that code: struct vec3{ float x, y, z; }; struct vec4{ float x, y, z, w; }; struct mat3{ float m00, m01, m02, m10, m11, m12, m20, m21, m22; }; vec3 toVec3(vector v) { return vec3(v[0], v[1], v[2]); } mat3 operatormul(mat3 A, mat3 B) { return mat3(A.m00*B.m00+A.m01*B.m10+A.m02*B.m20, A.m00*B.m01+A.m01*B.m11+A.m02*B.m21, A.m00*B.m02+A.m01*B.m12+A.m02*B.m22, A.m10*B.m00+A.m11*B.m10+A.m12*B.m20, A.m10*B.m01+A.m11*B.m11+A.m12*B.m21, A.m10*B.m02+A.m11*B.m12+A.m12*B.m22, A.m20*B.m00+A.m21*B.m10+A.m22*B.m20, A.m20*B.m01+A.m21*B.m11+A.m22*B.m21, A.m20*B.m02+A.m21*B.m12+A.m22*B.m22); }

vec4 operatoradd(vec4 a, vec4 b) { return vec4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } vec3 operatoradd(vec3 a, vec3 b) { return vec3(a.x+b.x, a.y+b.y, a.z+b.z); } vec3 operatormul(float val, vec3 v){ return vec3(val*v.x, val*v.y, val*v.z); } vec3 operatormul(vec3 v, mat3 m){ return vec3(v.x*m.m00+v.y*m.m01+v.z*m.m02, v.x*m.m10+v.y*m.m11+v.z*m.m12, v.x*m.m20+v.y*m.m21+v.z*m.m22); }

// Return rotation matrix for rotating around vector v by angle mat3 rotationMatrix3(vec3 v, float angle) { float c = cos(radians(angle)), s = sin(radians(angle));

return mat3(c+(1.0-c)*v.x*v.x, (1.0-c)*v.x*v.y-s*v.z, (1.0-c)*v.x*v.z+s*v.y,
            (1.0-c)*v.x*v.y+s*v.z, c+(1.0-c)*v.y*v.y, (1.0-c)*v.y*v.z-s*v.x,
            (1.0-c)*v.x*v.z-s*v.y, (1.0-c)*v.y*v.z+s*v.x, c+(1.0-c)*v.z*v.z);

}

mat3 rotationMatrixXYZ(vec3 v) { return rotationMatrix3(vec3(1.0,0.0,0.0), v.x)*rotationMatrix3(vec3(0.0,1.0,0.0), v.y)*rotationMatrix3(vec3(0.0,0.0,1.0), v.z); }

// Return rotation matrix for rotating around vector v by angle mat4 rotationMatrix(vec3 v, float angle) { float c = cos(radians(angle)), s = sin(radians(angle));

return mat4(c+(1.0-c)*v.x*v.x, (1.0-c)*v.x*v.y-s*v.z, (1.0-c)*v.x*v.z+s*v.y, 0.0,
    (1.0-c)*v.x*v.y+s*v.z, c+(1.0-c)*v.y*v.y, (1.0-c)*v.y*v.z-s*v.x, 0.0,
    (1.0-c)*v.x*v.z-s*v.y, (1.0-c)*v.y*v.z+s*v.x, c+(1.0-c)*v.z*v.z, 0.0,
    0.0, 0.0, 0.0, 1.0);

}

float opS( float d1, float d2 ){ return max(-d2,d1); } vector opU( vector d1, vector d2 ){ return (d1[0]

SuperRare makes it easy to create, sell, and collect rare digital art. SuperRare's smart contract platform allows artists to release limited-edition digital artwork tracked on the blockchain, making the pieces rare, verified, and collectible. Filter the crypto art world's best selling works by artist name, creation type, and year of birth on OpenSea.
Contract Address0xb932...b9e0
Token ID
Token StandardERC-721
BlockchainEthereum
MetadataFrozen

Tatei Hikuri (Our Mother of Hikuri)

keyboard_arrow_down
  • Price
    USD Price
    Expiration
    From
  • Price
    USD Price
    Floor Difference
    Expiration
    From
Event
Price
From
To
Date

Tatei Hikuri (Our Mother of Hikuri)

ac_unit

0

keyboard_arrow_down
  • Price
    USD Price
    Expiration
    From
  • Price
    USD Price
    Floor Difference
    Expiration
    From

The Huichols call peyote, the sacred hallucinogenic cactus, "Hikuri" or Tatei Hikuri", which can be translated as "Our Mother Hikuri". The hikuri&fractal-lookin' geometry in the background is completely made out of code inside my 3D IDE. Here is that code: struct vec3{ float x, y, z; }; struct vec4{ float x, y, z, w; }; struct mat3{ float m00, m01, m02, m10, m11, m12, m20, m21, m22; }; vec3 toVec3(vector v) { return vec3(v[0], v[1], v[2]); } mat3 operatormul(mat3 A, mat3 B) { return mat3(A.m00*B.m00+A.m01*B.m10+A.m02*B.m20, A.m00*B.m01+A.m01*B.m11+A.m02*B.m21, A.m00*B.m02+A.m01*B.m12+A.m02*B.m22, A.m10*B.m00+A.m11*B.m10+A.m12*B.m20, A.m10*B.m01+A.m11*B.m11+A.m12*B.m21, A.m10*B.m02+A.m11*B.m12+A.m12*B.m22, A.m20*B.m00+A.m21*B.m10+A.m22*B.m20, A.m20*B.m01+A.m21*B.m11+A.m22*B.m21, A.m20*B.m02+A.m21*B.m12+A.m22*B.m22); }

vec4 operatoradd(vec4 a, vec4 b) { return vec4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } vec3 operatoradd(vec3 a, vec3 b) { return vec3(a.x+b.x, a.y+b.y, a.z+b.z); } vec3 operatormul(float val, vec3 v){ return vec3(val*v.x, val*v.y, val*v.z); } vec3 operatormul(vec3 v, mat3 m){ return vec3(v.x*m.m00+v.y*m.m01+v.z*m.m02, v.x*m.m10+v.y*m.m11+v.z*m.m12, v.x*m.m20+v.y*m.m21+v.z*m.m22); }

// Return rotation matrix for rotating around vector v by angle mat3 rotationMatrix3(vec3 v, float angle) { float c = cos(radians(angle)), s = sin(radians(angle));

return mat3(c+(1.0-c)*v.x*v.x, (1.0-c)*v.x*v.y-s*v.z, (1.0-c)*v.x*v.z+s*v.y,
            (1.0-c)*v.x*v.y+s*v.z, c+(1.0-c)*v.y*v.y, (1.0-c)*v.y*v.z-s*v.x,
            (1.0-c)*v.x*v.z-s*v.y, (1.0-c)*v.y*v.z+s*v.x, c+(1.0-c)*v.z*v.z);

}

mat3 rotationMatrixXYZ(vec3 v) { return rotationMatrix3(vec3(1.0,0.0,0.0), v.x)*rotationMatrix3(vec3(0.0,1.0,0.0), v.y)*rotationMatrix3(vec3(0.0,0.0,1.0), v.z); }

// Return rotation matrix for rotating around vector v by angle mat4 rotationMatrix(vec3 v, float angle) { float c = cos(radians(angle)), s = sin(radians(angle));

return mat4(c+(1.0-c)*v.x*v.x, (1.0-c)*v.x*v.y-s*v.z, (1.0-c)*v.x*v.z+s*v.y, 0.0,
    (1.0-c)*v.x*v.y+s*v.z, c+(1.0-c)*v.y*v.y, (1.0-c)*v.y*v.z-s*v.x, 0.0,
    (1.0-c)*v.x*v.z-s*v.y, (1.0-c)*v.y*v.z+s*v.x, c+(1.0-c)*v.z*v.z, 0.0,
    0.0, 0.0, 0.0, 1.0);

}

float opS( float d1, float d2 ){ return max(-d2,d1); } vector opU( vector d1, vector d2 ){ return (d1[0]

SuperRare makes it easy to create, sell, and collect rare digital art. SuperRare's smart contract platform allows artists to release limited-edition digital artwork tracked on the blockchain, making the pieces rare, verified, and collectible. Filter the crypto art world's best selling works by artist name, creation type, and year of birth on OpenSea.
Contract Address0xb932...b9e0
Token ID
Token StandardERC-721
BlockchainEthereum
MetadataFrozen
Event
Price
From
To
Date